A User’s Guide to txt2XML
v0.98

Brian Thomas

Astronomical Data Center
Goddard Space Flight Center/NASA

May 17, 2000

Contents

List of Figures

List of Tables

1 Introduction
1.1 What is txt2XML?

1.2
1.3
14

1.5
1.6
1.7

Where

and When to Use txt2XML

Installing txt2XML L e
Software Requirements,

1.4.1
1.4.2
License

Installation on UNIX systems
Installation for users with W9x platforms

Support/Contact/Bug Reports.

Credits

2 Getting Started Using txt2XML

Parsing Philosophy oo oL
Running txt2XML from the Command Line
Running the Program in GUIl Mode

2.1
2.2
2.3

2.3.1
2.3.2

GUI Orientation L.
Short Tutorial Using the GUI

3 txt2XML Parsing Rules

Introduction
About the Rules Document
How the txt2XML Uses the Rules to Tag Text
Matching Text with Rules
Examples of Rules Use

3.1
3.2
3.3
3.4
3.5

3.5.1
3.5.2
3.5.3
3.5.4
3.5.9
3.5.6
3.5.7
3.5.8

Controlling the Working Chunk that Child/Sibling Rules See .
Passing the Working Chunk Back to the Parent Rule
Removing Extraneous Text
Flexible Tagging
Creating Control Statements
Tagging Repeated Text Structures.
Tagging Null Text Content
Arranging Output Tag Order

ii

iv

A Summary of Options

B Rules Glossary/API
B.1 txt2XML Rule . .
B.1.1 Description
B.1.2 Attributes
B.1.3 Usage . .

B.2 match and ignore
B.2.1 Description
B.2.2 Attributes
B.2.3 Usage . .

B.3 repeat Rule . . .
B.3.1 Description
B.3.2 Attributes
B.3.3 Usage . .

B.4 halt Rule
B.4.1 Description
B.4.2 Attributes
B.4.3 Usage . .

B.5 choose Rule . . .
B.5.1 Description
B.5.2 Attributes
B.5.3 Usage . .

B.6 print Rule . ..
B.6.1 Description
B.6.2 Attributes
B.6.3 Usage . .

C TODO/BUGS
D txt2XML Rules DTD

E Sample Text

Rules

iii

39

42
42
42
43
43
43
43
43
45
46
46
46
47
47
47
47
47
48
48
48
48
50
90
a0
50

51

52

54

1.1

2.1
2.2
2.3

3.1

List of Figures

txt2XML in action. 2
txt2XML GUI tutorial text areas 17
txt2XML GUI tutorial Error Log Area 21
Working Chunk of the Rule Belonging to Error 22
Example of matched text content 30

v

List of Tables

1.1 Perl Modules Required to Run txt2XML. 4
2.1 Defined Error Levels in txt2XML. 9
3.1 Summary of Available Parsing Rules and Attributes. 27
A.1 Summary of General Options in txt2XML. 40
A.2 Summary of Mouse Bindings in txt2XML. 41
A.3 Summary of GUI Key Bindings in txt2XML. 41
B.1 Differences in usage of Ignore and Match Rules 46

PART 1

Introduction

1.1. What is txt2XML?

txt2XML is a Perl/Tk program designed to transform semi-formatted text files
into XML according to a set of user-specified rules. By semi-formatted we mean
recognizable character patterns that mark the start and end of the text that is to
be tagged.

txt2XML uses Perl's powerful regular expression pattern matching to identify
the interesting text. The rules (which are written in XML) can be nested to limit the
scope of the pattern matching and include constructs to allow looping and control
flow similar to a programming language. The result of applying these rules to an
input document is a well-formed XML document that contains some or all of the
text of the original input file, parsed into meaningful XML elements.

This program has been tested on both UNIX and Microsoft Windows'™ 95/98
(W9x) computers but actually has a fair chance of running on any computer that
has Perl installed and a C compiler (C compiler NOT needed for Windows versions
to run; see section 1.3 for software requirements).

txt2XML may be run as a command line call or with its graphical user inter-
face (GUI, figure 1.1). The GUI features a WYSIWYG interface designed to ease
the writing and debugging of parsing rules. In the graphical mode the user may
interactively run, debug, and edit the input or rule files, and then re-run the parser
any number of times. Keyboard and mouse shortcuts allow the user to jump to any
point in the parsing run to examine exactly what chunk of text was fed to a rule,
and how the rule reacted to it. From the GUI, the user may save/load new output

text, input and rules text at any point.

Figure 1.1: txt2XML in action.

Command Buttons Parser Score
Error Log Area

ETTOT Log

<L [1] [natch rewainder] :author : to support the operation of the Hubble Spacs Telascops
rule] sFule "<natch tog= pogena” start=", » en 37 feiled to natch but i required. =
uzar” start=" (” Bk o R T e) 7

xml)

ERRDR‘ [3] [1] [require

=
L L

<title’The Guide Star Catalog Version 1.1 -

Guide Star Eatalng Varsion 1.0 i <nfitch tag="reference” start="={20, 301\ §

Aztrononical foundations and ina) <repeaty <author>

Lasker B.H., Sturch C.R., Mclean <natch tag="title” start=""\n7?[a-z, < lastNane> catalop< / lastHanes

<hstron, J,, 89, 2018 (1B80)> <natch end="\n[A-Z,0-5] | §’ statusOff <Jfauthor>

=1890AJ.99.2018L <natch start=""\n\s{3, 10}" enc="\n\] <ERROR level="1" tupe="match remaincer”
Photonetric and astronetric nodel: <repeats <journaly

Russell J.L., Lasker B.M., Mclean <match tap="zuthor” enc=”,\s <nan=-The Rssociation of Universities fo

<match tag="prefix’ ([c]</nanes

<fstron. J., 08, 2053-2031 (1590)

<voluma>1989<fvulume>
<ERROR 1evel="1" tupe="
1” tupe

"required rule’sry
recuired rule”>r

Praduction, database organization)
Jerkner H‘, Lasker B.M., Stur"t:h C
B2 (1890)>

<EFROR level=

upe="natch remainder”> j
<ERROR level 1" tupe="required ruls”>rule
<titler
TheGuide Star Catalog Version 1.0 is described i
fstrononical foundations and image processis
<authar>
<lastName>Lasker</ lastNane>
<initialLB</initial>
<initialM/initial>
<fauthor>
Sauthor>
lastHanes Sturchd / lasthany
01<” end=": initial>Ce/initial)

| PRIV — ey)7

</natchy

Input Text Area Rules Text Area Qutput Text Area

In this figure txt2XML is shown running in the sliding frames mode (the default
display mode when the Perl Tk::SplitFrame module is installed).

1.2. Where and When to Use txt2XML

Like any piece of software, txt2XML has its proper operational space. txt2XML is
designed to be useful for conversion of many ASCII documents which share a similar,
but not rigidly common, format. txt2XML can do an excellent job of tagging ASCII
text but definitely does a terrible job of arranging the tagged text into the format
you desire. txt2XML will give you a consistent output format, but tags in the output
document are rarely arranged /nested in the manner that you may desire (i.e. to the
DTD).

With a lot of effort you can make txt2XML create documents with an acceptable
output format!, however, this is tantamount to eating Chinese food with a pair of
screwdrivers. Its just not a rational thing to do. The arrangement/re-nesting of
XML nodes is really better left to software like XSLT so, in general, you will want
to have a two-step process for converting ASCII text to your specified DTD:

1) Capture tagged content (using txt2XML)

2) Rearrange tagged content to meet your DTD (using XSLT or the like).

1.3. Installing txt2XML

1.4. Software Requirements

You will first need a copy of the txt2XML distribution archive. These are ob-
tainable from our anonymous
FTP server xml.gsfc.nasa.gov in /pub/XML/txt2XML or off of the WWW from
our page at http://adc.gsfc.nasa.gov/adc/adc_software.html.

You will need an installation of Perl, version 5.00503 or better. On many UNIX

systems Perl is probably already installed. You can check its version using:

> perl -v

'In fact, its quite complicated to do even the simplest rearrangement of tags with txt2XML, so
we won’t bother to describe how.

Table 1.1: Perl Modules Required to Run txt2XML.

Perl Required Associated Files by FTP site
Module Version CPAN (UNIX/W9x)* ActiveState (W9x)?
XML::Parser 2.27+ XML-Parser-2.27.tar.gz Included in ActivePerl
XML::DOM 1.25+ XML-DOM-1.25.tar.gz XML-DOM. zip
Tk 8.00.0134+ Tk800.013.tar.gz Tk.zip
Tk::SplitFrame® 0.01+ Tk-DKW-0.01.tar.gz —

1.04+ Tk-GBARR-1.0401.tar.gz

0.07+ Tk-Contrib-0.07.tar.gz

Location: ftp://ftp.cpan.org/pub/CPAN/modules/by-module
2Location: http://www.activestate.com/packages/zips
3Module is optional. Can be difficult to install on W9x platforms.

or from within a MS-DOS command shell:
> perl.exe -V

If you find that you need to upgrade Perl you may obtain a copy from
ftp.cpan.org. RedHat Linux users may wish to just obtain the binary
rpm from ftp.redhat.com (don’t forget to check the signature of the rpm
file!). Windows users can obtain a free copy of ActivePer]l from ActiveState at
http://www.activestate.com/ (obtain build 521 or better).

Depending on the distribution of Perl you installed, you will need to obtain and
install the Perl modules in table 1.1: Tk::SplitFrame is an optional module; if it is
installed the user can select to display the tool using a sliding frames mode (this is
the mode used in figure 1.1). Otherwise, txt2XML will only display with all of the

text areas split into separate windows.

For Windows users it is definitely far easier to go the ActivePerl route and
install the PPD (module) files they provide. You can obtain the ActiveState PPD
files (archived in zip format) from www.activestate.com/packages/zips.

To use the CPAN modules (archived as gzip’d tarballs) UNIX and Windows users
will need a decent C/C++ compiler (gce 2.8.1 works for us) to build the XML::Parser
module, and a compatible make utility (NMAKE works for us on W9x platforms).
CPAN modules are available at ftp.cpan. org/pub/CPAN/modules/by-module.

1.4.1. Installation on UNIX systems

You will first need to insure that you have the correct version of Perl and all of the
needed Perl modules installed.

To install a Perl module, unpack the tarball:
> gunzip -c¢ file.tar.gz | tar xvf -
Change into the new sub-directory and then type:
> perl Makefile.PL; make ; make test; make install

You will need to do this for each module in turn. Installation of the modules

will go easier if you install them in the order:

XML-Parser-2.27.tar.gz
XML-DOM-1.25.tar.gz
Tk800.013.tar.gz
Tk-GBARR-1.0401.tar.gz
Tk-Contrib-0.07.tar.gz
Tk-DKW-0.01.tar.gz

Now unpack the txt2XML tarball txt2XML_latest.tar.gz:

> gunzip -c¢ txt2XML latest.tar.gz | tar xvf -

You should be able to use txt2XML right from the new sub-directory. There is a
simple install script, install.sh, which you may use to install txt2XML in a favorite
directory. If you can get super-user access (if you don’t know what this is, you don’t
have it) you can install the program in a system directory using the install script.

Finally, a quick troubleshooting note: the path to Perl may not be set properly
on your machine and this can cause the program to fail to execute. Type this to

determine the location of Perl:
> which perl
or, if you have a Linux/GNU system:
> locate perl | grep bin
or
> slocate perl | grep bin

IF Perl is in a different spot than /usr/local/bin/perl you will have to edit the first
line in the txt2XML.pl file.

1.4.2. Installation for users with W9x platforms

Installation on Windows platforms is even easier than for UNIX, however, just as in
the UNIX install you will first need to insure that you have the correct version of Perl
and all of the needed Perl modules installed. If you need to install/upgrade Perl,
download the zip file from the ActiveState web site http://www.activestate.com/
and run the installer. The modules are similarly easy to install. Download the zip
files, unpack them, and type (within MS-DOS shell):

> ppm install XML-DOM.ppd

to install the XML-DOM module. Just substitute the appropriate PPD file name

to install the other modules.

Now unpack the latest txt2XML zip file. You can now invoke the program from
the spot you unpacked it. If you don’t want to have to type the full path to the
Perl executable you can check the PATH variable for your account. Make sure it
includes the directory that perl.exe resides in (use the Find Utility in Windows to

locate the Perl executable).
1.5. License

Please read the License file which is included in the archive distribution.
[Will txt2XML be released as open software? Is GPL or BSD license

appropriate? Does NASA have its own license for software? |
1.6. Support/Contact/Bug Reports

There is no official user support for txt2XML. We are, however, sympathetic to the
first time user who has failed to get the program running even after having read the

documentation. Please send requests for help to:
adc@adc. gsfc.nasa.gov

Remember we are busy on another project or two, so our response may take some
time.
Comments on how we may work to improve this program, its documentation and

bug reports (especially patches!) are greatly appreciated. Please send this email to:

brian.thomas.1@gsfc.nasa.gov

1.7. Credits
Concept: Ed Shaya, Brian Thomas, Brian Holmes.
Parser Design: Brian Thomas, Ed Shaya, and Jim Blackwell.
GUI Design: Brian Thomas, Ed Shaya and Brian Holmes.

Code Written by: Brian Thomas and Ed Shaya.

PART 2
Getting Started Using txt2XML

2.1. Parsing Philosophy

txt2XML does not think in terms of lexical structures (e.g. lines, paragraphs, pages,
etc.), instead, the document is conceived of as a “chunk” of text which may be
subdivided into a number of sub-chunks (which may themselves be further sub-
divided, and so on). Any amount of text may be a chunk (1 or more characters)
and txt2XML just views a chunk as comprising a string of characters (which may
be interspersed with formatting characters like \n and \r).

txt2XML proceeds to execute each parsing rule starting from the top of the
rules document. Traversal of the rules can involve looping operations which means
that the parser can execute any particular rule more than once. Therefore we call
each execution of a parser rule a “rule event”. Each rule event will have with it an
associated portion of the input text.

The “working chunk” is that portion of the text which is under consideration
by the “current rule event”. A parsing rule may either divide the current “working
chunk” and pass it on to child rules, or work with the current working chunk by
matching part or all of it. The matched part of the text is refered to as “Match
Text” (see section 3.4) and the rules can specify that the Match Text either be
ignored or inserted in the output document within a specified tag. After use, the
Match Text is subtracted from the working chunk. If any text remains, it becomes
the new working chunk which is passed to a sibling rule. If no siblings exist then,
under normal circumstances, that portion of the text chunk is tagged with an error
tag in the output XML document.

There are different levels of errors in txt2XML and these are presented in order

of “seriousness” in table 2.1. It can sometimes be helpful to run a tight ship and

8

Table 2.1: Defined Error Levels in txt2XML.

| Error Level Error Name Description Example Error
0 Trivial Unlikely to be missed information. Unmatched Whitespace
1 Normal Likely to be missed information. Unmatched Character String
2 Serious Missing/malformed Parser rule. non-tag <match> rule missing

child rules.
99 Don’t Halt No errors will stop this run. —

catch all errors when you are trying to debug your rules. On a production run, where
input file formats may vary from file to file, upping the error threshold is more useful

so you can get the job finished and treat the errors for each file individually later.
2.2. Running txt2XML from the Command Line

If you have already developed the rules you need, then most of the time you don’t
want the GUI. Instead, you’ll want to quietly parse a pile of files without any of the
fireworks. Command line mode is for you.

To run the program in command line mode depends on the system that you are
running txt2XML on:

From a UNIX shell type:

> txt2XML.pl -f <rules_file> <file_to_be_converted>
and from a MSDOS command window:
> perl.exe txt2XML.pl -f <rules_file> <file_to_be_converted>

2.3. Running the Program in GUI Mode

The GUI mode presents the user with an interactive interface with which to see
the operation of the parser as it goes through the input text. This mode is used to

help the user write and debug their rules. There are many short cut mouse and key

bindings that will help to accelerate the work of the user (see tables A.3 and A.2
for a full listing).

To fire up txt2XML in the GUI mode, it depends on the platform you are using
it on:

From a UNIX shell type:

> txt2XML.pl -g

From Windows the easiest way to run in GUI mode is to click on the icon called
“gtxt2XML”. Optionally you can open up an MSDOS command window, switch to
the directory in which the txt2XML.pl file resides and type:

> perl.exe txt2XML.pl -g

2.3.1. GUI Orientation

Now that you have the GUI up and running you will notice that there are several
text areas and a menu/command button bar (refer to figure 1.1). We’ll give a quick
orientation on each of these below, you may wish to jump over this section to the

short tutorial which follows it (section 2.3.2).

Command Buttons

”

The command buttons available are the “Run Button”, “Forward 1 Rule Button 7,
“Back 1 Rule Button ”, “Next Halt Button”, “Toggle Input Chunk View Button”, and
“Validate Output Button”. There is a “Parsing Score” display on the far right of the

command button bar. The score is defined as:

Numb. of characters text that were successfully parsed
score = . - (2.1)
Numb. of characters in the input text

Pressing the Run Button causes the application to re-run the parser on the text
which is currently in the Input Text Area using the parsing rules which are currently
in the Rules Text Area. Output from the parser run is then shown in the Output

Text Area.

10

Pressing the Forward 1 Rule Button will make the application advance forward 1
rule if it can. You will see the current rule highlighted in yellow in the Rules Text
Area shift down 1 rule and the input chunk highlighted in yellow mark the chunk of
text that was fed into that rule.

Pressing the Back 1 Rule Button causes the application to return to the previous
rule, if one exists. As for the Forward 1 Rule Button the highlighting in the Input
Text Area will change to indicate the working chunk for the current rule.

Pressing the Toggle Input Chunk View Button will toggle the colorization of the
working chunk. The default is to colorize the working chunk with a single color:
yellow. In this mode the color of the button will be yellow. The other mode is
to colorize the Start Match, Match Text, and End Match portions of the working
chunk (see section 3.4 for a definition). The button will appear pink in this mode.

The Validate Output Button can be used to check if the output text conforms
to the XML specification (ie. check to see that the output is well formed XML
document). In the future, it may be possible to validate the output document
against a specified DTD, but this currently is not provided, and given that txt2XML
is unlikely to be used to create the final XML formatted document, probably not
needed. IF a given output document is found to be not well formed XML, the first

node at which the document is found non-conforming will be colorized bright green.

Options Menu

The Options menu contains the following options: “Change Tool Display Size”,
“Change Text Font Size”, “Change Text Fg/Bg Color”, and the “Quit” entries.
Selection of the Change Tool Display Size entry will allow the user to pick from
a limited menu of other display sizes. Numbers in parenthesis next to the entries
are guides to the user of the general screen size in pixels of the given display. This
selection will change the point size of the font too.
Selection Change Text Font Size entry will allow the user to change the point size

of the font of the tool without changing the overall display.

11

Selection of the Change Text Fg/Bg Color entry allows the user to change the
display colors of the text areas within the tool.
Selection of the Quit entry exits the program. You will be NOT asked if you

want to save any edited files (you have been warned!).

Edit Menu

The Edit menu contains the following options: “Allow Edit Input Text” and “Allow
Edit Output Text”. By selecting “Yes” for either option you can enable editing of
that text area. When editing is enabled in a text area, the name of the file will be

shown with a yellow color. Uneditable files have a dull gray background color.

Parsing Control Menu

The Parsing Control menu contains the following options: “Halt Parser on Error Level”,
“INCLUDE Tagged Errors in Output XML Text”, “Entify Chars in Output XML Text”,
and the “Allow Null Matches in Output XML Text” entries.

Selection of the Halt Parser on Error Level allows the user to change the level of
error (or higher) that will stop the program. If “normal” error level is selected then
“trivial” errors will be noted, but passed by while any “normal” or “serious” error
the parser encounters will halt the program. Setting to “Don’t Halt” prevents the
program from halting on any error once it starts its parsing run. Refer to table 2.1
to see the defined error levels.

Selection of the INCLUDE Tagged Errors in Output XML Text entry allows the
user to select whether or not errors encountered in the parsing run will show up
in the output text (the errors are tagged with the string “ERROR”). Regardless of
this setting all errors still show up in the Error Log Area.

Selection of the Entify Chars in Output XML Text changes whether or not char-
acters within tags in the output text are entified. There are a number of reasons
for toggling the entification. We have found cases where either turning entification

on/off improves readability of the output text.

12

Selection of the Allow Null Matches in Output XML Text entry is a special use
option. It allows one to tag ‘empty’ text. A case of this is when one might want to
record the existence of an empty tag in SGML. Normally, it is safe (and desirable)
to set this option to “No”.

Help Menu

The Help menu contains the following options: “About”, “Parsing Text”, and the
“Known Bugs” entries. Selecting each of these entries will bring up a short help
message on that topic. The Known Bugs is notoriously out of date. If you find a

bug, please be sure to let us know about it!;

Error Log Area

The Error Log Area is where all of the accumulated errors from a parsing run are
displayed. Every time the Run Button is pressed this area is cleared out for a fresh
batch of errors (fun!).

Error messages are only loosely formated in the log. A typical message would

appear as:
ERROR:[0][1][remainder]: A chunk of text that errored out.

where the first bracketed number records the order in which the error occurred, the
second bracketed number provides the numerical representation of the error level
(see table 2.1), the last bracket encloses the name of the error and the remaining
text is the chunk of text which was errored out.

You can find use the Error Log Area to quickly navigate to the problem spots
within your rules. Click on any given error entry in the Error Log Area with the
lefthand mouse button. Doing so resets the Rules Text Area to display the rule at
which the error occurred and highlights the chunk of text in the Input Text Area.

'send a bug report to brian.thomas.1@gsfc.nasa.gov please!

13

Input Text Area

The input ASCII text is shown here. The text shown will be highlighted depending
on the setting of the Toggle Input Chunk View Button. In the default highlighting
scheme the working chunk appears highlighted in yellow and the rest of the text
plain. In the second mode, the working chunk highlighting is more complex: the
Start Match, Match Text, and End Match portions of the working chunk are all
colored differently.

You can edit the text in the Input Text Area by setting the Edit menu option
Allow Edit Input Text to “Yes” (the name of the file will be shown with a yellow
background). The editing process is simple, position the mouse over a section of
text and click the left mouse button to relocate the text cursor. Alternatively, you
can use the arrow keys to move the cursor. Now, just type in new characters on the
keyboard to add text. You can “swipe” regions of text with the mouse by holding
down the left mouse button. Swiped text will appear with a grey background. If
you hit the backspace or delete keys the swiped text will be deleted from the Input
Text Area. Now, you can relocate text by swiping it first then clicking the middle
(UNIX) or right (W9x) mouse buttons. Swiped text will be duplicated starting
from the spot over which you have positioned the mouse. Unfortunately, there is
no buffer history. One day we’ll replace this simple editor with something more
heavy-weight.

You can set a break point by positioning the mouse over the point in the input
text you wish to stop feeding the parser text and pressing the <Ctrl> key and then
left-clicking the mouse. The breakpoint character will appear as red on a blue cell.
To clear this breakpoint, press <Alt>-—c.

There are three green buttons: “Load File Button”, “Save Button”, and “Save As
Button” which appear at the top of the Input Text Area. Use these buttons to bring
in new input files, overwrite your edited text to a file (defaults to the name of the

original file), or save your buffer to a new file.

14

Rules Text Area

The Rules Text Area displays the parsing rules which are an XML document. The
various rules within body of the document are colorized to ease reading of the rules.
The “current rule” is displayed in this area and it will be highlighted in yellow. At
the end of a parsing run, the last rule successfully parsed with will be the current
rule. You can advance/go back to the next/prior rule by clicking on the Forward 1
Rule Button / Back 1 Rule Button or by using the <Alt>—f/<Alt>—b key presses.

You can hop to any rule of interest that was successfully parsed by pressing
down the <Ctrl> key and left clicking the mouse on the rule. The current rule
will become the rule you clicked on and will be highlighted in orange. Note that
if the new current rule contains children, than for this particular function both the
leading element and the closing element will be highlighted to improve readability.

The Rules Text Area has all of the same editing abilities as the Input Text Area.
When you type in new rules the text will be normal. When you run the parser, if
the newly added rules are valid XML, they will be colorized. IF the edit you made
to the rules does not result in a well-formed XML document, the first rule at which
the document becomes non-conforming will be colorized bright green. Usually this
means that the error was made in a preceding nearby rule. Note that the processor
will not run until you have a well-formed XML rules document. The content and
use of the rules are discussed in section 3.1.

As for the Input Text Area there are three green buttons at the top of the widget:
“Load File Button”, “Save Button”, and “Save As Button”. These have the same

meanings and abilities.

Output Text Area

The Output Text Area displays output XML text in a colorized format. Elements

are colored green and error elements are colored red. Tagged text is left normal.
The Output Text Area is (by default) not editable and only has two of the three

green file function buttons that the Input Text Area and Rules Text Area have. You

15

can save / save as your output file. As for the other two widgets, the “Save Button”
and “Save As Button” buttons have the same meanings. To make the Output Text
Area editable, set the Edit menu option Allow Edit Output Text to “Yes” (the name
of the output file will be shown with a yellow background then).

2.3.2. Short Tutorial Using the GUI

Alright, lets take this baby out for a spin, shall we? In this part we’ll focus on some
selected features of the GUI and how they may be used to debug an existing set of
rules. We'll discuss some example problems in our test rule set but, for now, we’ll
save the greater details on how the rules function for part 3.

As netzitens, many of us belong to email lists. All sorts of useful information
is traded on these lists, but often the site that serves the list does not provide any
archival searching. Lets examine how we can XML’ize some email from a listserver
that some of you may be familiar with (the ActiveState Perl—XML mailing list) so
that it can be made part of an XML database we want to host?.

You should have several example files which where packed within the tarball
distribution. Change to the directory where these reside and then fire up the GUI
with the sample input ASCII text file sample.txt, and its accompanying sample
rules sample rules.xml (the content of these files is shown in appendix E). To do
all of this without having to resort to loading these files after the GUI comes up,
type the following:

> txt2XML.pl -g -f sample rules.xml sample.txt (UNIX)
or

> perl.exe txt2XML.pl -g -f sample rules.xml sample.txt (W9x)

2Yes, I know the ActiveState people provide archival searching capability, so for this mailing
list this is a redundant exercise. Its just a tutorial, Ok?

16

Figure 2.1: txt2XML GUI tutorial text areas

Vertical Slider Bar

Rules (sample™retee’xml

Load File Load File =

R T e I o (2 T et 0 [R N[T=t24M root_teg="RHLnail™> [<Tenl version="1.0"%>
the entities defined in t, but I have fou <Lz >

the 2 lines above, <1— Sample_rules.mnl, For use in the txt2L € U2 progran yersion 138" erecution date="4
SERROR Ievel="0" tupe="lzading string’
hen I define handlers the Entity one doc <1— first, remove the preamble, no info ve war
the ExterrEnt one is never called. <ignare end="-{10,80}\n"/> i
tupe="reguired rule”>rule &g
fny one nanaged to do better? <1— loop thru docunent, tagging up each ewall <ERROR level="17 tupe="leading string™ Ancth
<repeat> < /ERRORY
John Dos <I-- each enail begins with ”Subject:” <ender>John Doe &1tsjohn.dos@enather .site.ns
Senior Programmer—Analust ends with 10 to 80 dashes and a newline <iine-Sat, 8 Apr 20007 10:52:46 -0400 (EDT) /T
First Author Company - <number> 1€ /nunber>
dohn . dos@another.site et <match teg="email” start="Subject:” enc
http://sonehonepage . htn 1 <match b ject”
have a general guestion shout MML::Parser 2.78: h
nat e it to output a OTD thatéapos;s Gouat;clossBouot
<match tog=hot s
fnater> Ao squotsclossiquots 1 wean that the ITD should inc

Subject: Re: Another XML::Parser 2.23 ou <
Frou: Jane Doe <jane,dos@different,site. </repeat>
Date: Sat, & for 2000 11:14:00 -0400 (EDY Bt DR

H-Hessage-Nunber: 2

the declaration and the call) but not the content

ELeT BT & ent SYSTEN fouotsent . filesouot;agts
On Sat, & Apr 2000, John Doe urote: Fents

> Hi, T just want to get that back in the output.
> At the moment T can get the content of ent.file par
> When T defire handlers the Entity one ¢ the entities defined in t, but I have found no wau
> the ExternEnt one is never called. the 2 lines above.
I found the problen. XML :iParser::new se When T define handlers the Entity one does rot see
ExternEnt. AFTER setting the user ones, 1t the ExternEnt one is never called.
fn easu work around s to use SetHandler: Ay one managed to do better?
e A —| =7 [LY /] = = =i

Horizontal Slider Bars

In this figure the text areas of txt2XML are shown after the GUI comes up.

Ajustment of GUI Appearance

4

You should see the GUI come up after a brief wait (don’t forget to use the ‘-g’
switch!!). As a first step, let’s get comfortable adjusting aspects of the GUI ap-
pearance. Figure 2.1 shows how the text areas within the GUI should look and
highlights the slider bars which can be used to resize the various text areas within
the GUI as desired. The overall size of the GUI can be adjusted by pulling on its
edges.

If you don’t like the size of the font (either too small or too large), go to the
Options Menu and select a new size font from the Change Text Font Size submenu. In

the Options Menu you’ll notice other changes you can make to the GUI apperance.

17

Basic Interface and Controls

There is some text in all 3 text areas as well as in the Error Log Area. The output
text is populated because the GUI will run the parser (when it is first invoked)
IF you specify both an input and rules file on the command line (which you were
instructed to do!). To run the parser the next time, just press the Run Button or
<Alt>-—p.

At the top of the GUI (figure 1.1) you can see the command buttons arrayed
horizontally. Press the Validate Output Button; doing so will cause txt2XML to
check the well-formedness (but not strong validation) of the output document. One

of the tags in the output document is highlighted with a bright green color:
<ERROR level="1" type="remainder">

This is because some of the error statements that txt2XML can insert into the
output document will violate the XML standard. Lets turn these error statements
off and try again to see how well we do. Turning off errors in the output is easy,
go to the Parsing Control Menu and select “No” from the INCLUDE Tagged Errors in
Output XML Text. Now run the parser then press the Validate Output Button again.
You should now see that there is no bright green color highlighting any of the tags
in the output text (thereby indicating the output document is well-formed).

You will notice that the tags within the Rules Text Area and Output Text Area
are colorized to improve readability. The need to follow the XML standard requires
that we entify certain characters and this can hurt the readability of the tagged
output text. Lets turn off the entification by selecting “No” from the Entify Chars in
Output XML Text submenu within the Parsing Control Menu. Run the parser again;
now we see that some of the tagged content gets colorized but is possibily more
readable. Not suprisingly, if you check you will find the output document is not well
formed. Select “Yes” from the Entify Chars in Output XML Text submenu within
the Parsing Control Menu and rerun the parser to return the output text back to its

original state.

18

The most important information the GUI can provide is in the identification
of what portion of the input text (or current “working chunk”) is being seen by a
particular rule at any one time. This information may be gleaned from the Input
Text Area and Rules Text Area. You might have already noticed that there will
sometimes be background highlighting of text in both text areas. In the Input Text
Area the text that is highlighted (yellow) corresponds to the current working chunk.
In the Rules Text Area the text that is highlighted (yellow or orange) corresponds
to the current rule event. You can change the current rule event by either selecting
a particular rule using the mouse (place the pointer over the rule, hold down the
<Ctrl> key and left click) or by pressing the Forward 1 Rule Button or Back 1 Rule
Button . Try hopping to a rule using the mouse. Select the following rule with the
<Ctrl> key held down and left click:

<match tag="time" start="Date:\s?" end="\n"
statusOfStart="accept" />

You should see the working chunk change to encompass the following text:

Date: Sat, 8 Apr 2000 10:52:46 -0400 (EDT)
X-Message-Number: 1

HI,

| have a general question about XML::Parser 2.28: has anyone managed to
use it to output a DTD that’s "close” to the one in the input document?

By "close” | mean that the DTD should include the external entities (both
the declaration and the call) but not the content of those entities.

If | have
<!ENTITY % ent SYSTEM "ent file" >
%ent;

| just want to get that back in the output.

At the moment | can get the content of ent.file parsed and | can output
the entities defined in t, but | have found no way to get ANYTHING about
the 2 lines above.

When | define handlers the Entity one does not see the first line and
the ExternEnt one is never called.

Any one managed to do better?

19

John Doe

Senior Programmer-Analyst
First Author Company
john.doe@another.site.net
http://somehomepage.html

Now click on the Forward 1 Rule Button. You should see the working chunk
change slightly. The first line will disappear (this is because the last rule used that
part of the chunk). Now click on the Back 1 Rule Button twice. You should see the
working chunk change slightly again. This time lines were added at the beginning
of the working chunk, showing the content being ‘undigested’ by the rules as you
go backward through the rule events. Notice that when you use the mouse to select
the current rule event the color is different from when you use the buttons; orange
when you use the mouse and yellow when you use the buttons. This difference is to
indicate the slight difference in meaning between the two actions. Clicking with the
mouse will highlight the whole node of the rule (the opening and ending elements)
whereas the button navigation will only highlight the opening node of the rule. To
illustrate this compare the difference in appearance between clicking on these rule

nodes:
<ignore end="-{10,80}\n"/>
and

<match tag="email" start="Subject:" end="-{10,80}\n"
statusOfStart="accept" >

There is more information that can be gleaned about the way in which the rule
is using the working chunk. To see how the working chunk was ‘digested’ by the
rule event click on the Toggle Input Chunk View Button. This will now change the
highlighting of the working chunk in the Input Text Area to show what portions of
the working chunk correspond to the Start Match, End Match, and Match Text

portions (see section 3.4 for definition of these concepts).

20

Figure 2.2: txt2XML GUI tutorial Error Log Area

Error Log

ERROR: [1][0][leading string]:
ERROR: [7] [1] [required rule]:rule "<natch tag="subject” start="Subject:\s™” enc="\n" >” failed to match but is reguired,
ERROR: [3] (1] [leading string]: Another MML::Parser 2,28 guestion /

Figure 2.2. In this figure the Error Log Area of txt2XML are shown after the GUI
comes up.

We have left one of the most useful aspects of the GUI interface for last. You
can use the errors shown in the Error Log Area to hop to problem spots in your rules.
Figure 2.2 shows the Error Log Area for this tutorial. Take the mouse and left click
on the first error, you will see the working chunk and current rule change to reflect

the point where the error occured.

Fixing Errors and Editing Rules

Now that we have all of the basic pieces in place lets try to understand the tutorial
sample rules and text errors, fixing them as we go. As you may have already deduced,
the match rules specify starting and ending points at which text is grabbed from
the working chunk and tagged in the output document. The way we specify these
starting and ending points is through Perl regular expressions. In this tutorial you
don’t need to know a whole lot about Perl regular expressions or the inner workings
of the rules Don’t worry too much about the reasons for the edits we will later make
(below) in the rules set. Remember that our goal in this section is to see how the
various GUI features work together to help us identify problems in the rules. You
can follow up this section with a read of part 3 and/or appendix B to bring yourself
up to speed on the inner workings of the rules.

Looking at our GUI afresh, we note that the Parsing Score tells us how well we
did in tagging the content of the input document. In our case the Parsing Score is
68.28%, a fairly mediocre score. Lets try to do better by understanding the errors.
Click on the first error, e.g.

ERROR:[1][0][leading string]:

21

Figure 2.3: Working Chunk of the Rule Belonging to Error

Subject: Another #ML::Parser 2,28 guestion
From: John Doe <john.doe@another.zite.nets

Date: Sat, B Apr 2000 10:52:48 -0400 (EOT)
A—-Meszage-MHumber: 1

HI,

Figure 2.3. Colors indicate Start Match (light green) and Match Text (pink) portions
of the working chunk (yellow).

Doing so will highlight the rule:

<match tag="email" start="Subject:" end="-{10,80}\n"

statusOfStart="accept" >

and will highlight part of the text in the Input Text Area. If the Toggle Input Chunk
View Button is not pink click on it once to colorize the working chunk. We now see
that the begining part of the input text (the working chunk for the rule indicated)
looks like that shown in figure 2.3; it has a yellow band followed by a light green
portion (indicating the Start Match) and a longer pink portion (indicating the Match
Text). The yellow band indicates that the leading portion of the working chunk was
unused hence the error we see. Since this unused portion of the chunk is merely
whitespace, the level of the error is low (the error level is 0), so we could choose to
discount this problem, however, just for the fun of it, lets change the offending rule
to grab the leading whitespace.

Edit the rule by clicking on the rule in the Rules Text Area (at the start= part of
the rule). You will see a blinking cursor and can edit the rules text (refer to section

2.3.1 if you need a few pointers on how to use the editing functions). After editing

22

the rule should now look something like this:

<match tag="email" start=""\s*?Subject:\" end="-{10,80}\n"
statusOfStart="accept" >

Re-running the parser will show that we still have the same first error (I?!):

ERROR:[1][0][leading string]:

However, left clicking on the error shows the following (different!) rule is highlighted:
<match tag="subject" start="Subject:\s?" end="\n"/>

So, mercifully, a different problem is occurring: we forgot to propagate our prior
changes down to the appropriate child rule. We simply need to change this child

rule to reflect the change in its parent rule. After editing it now looks like this:
<match tag="subject" start=""\s*?Subject:\s?" end="\n"/>
Re-running the parser should now give us the following (different!) leading error:

ERROR:[1][1][required rule]:rule ” <match tag="email” start=
" *\s*?Subject:” end="\s*?-{3,80}\n" >" failed to match but is required.

It is related to the other following error which is a match remainder error. The
”email” block of rules is receiving too much text, a combination of both the email
portion of the list (which we want) AND the trailing block of text that occurs at
the end of the email (which we don’t want). There are a number of ways which we
could use to fix the problem. For starters we could edit the input text to remove the
offending trailing text. This is only a half-solution though because we can expect
all the mail which is sent out by the listserver to have this trailing section (and we
definitely don’t want to have to edit every incoming message!). Lets simply change

the parent email rule to NOT be required, e.g. after editing it looks like:

<match tag="email" start=""\s*?Subject:\" end="-{10,80}\n"

statusOfStart="accept" required='"no">

23

and we can insert a ”trash match’? rule outside of the repeat block to tag up the
trailing text. Re-running the parser (for the last time, whew!) shows NO errors

(yeah!). The final, editted rules set would look like this:

<txt2XML root_tag="XMLMail">

<!—— Sample_rules.xml. For use in the txt2XML
GUI tutorial. These rules are designed to
ingest mailing list digests into XML (database).
—-——>

<!—— first, remove the preamble, no info we want there ——>

<ignore end="—{10,80}\"/>

<!—— loop thru document, tagging up each email ——>
<repeat>
<!—— each email begins with "Subject:" line and
ends with 10 to 80 dashes and a newline ——>

<match tag="email" start=""*7Subject:" end="*7—{3,80}\" statusOfStart="accept"
required="no">

<match tag="subject" start=""*7Subject:\7" end="\"/>

<match tag="sender" start="From:\?" end="\"/>

<match tag="time" start="Date:\?" end="\"/>

<match tag="number" start="X—Message—Number:\?" end="\"/>

<match tag="body"/>

< /match>

</repeat>

<!—— remove last stuff w/ trash match ——>

<match tag="TRASH"/>

</txt2XML>

3Yes, this is a technical term, see section 3.5.3

24

PART 3

txt2XML Parsing Rules

3.1. Introduction

In this section we’ll get into some details of the components and use of the txt2XML

parsing rules. Before we proceed further, a few definitions are needed:

1) A txt2XML “rules document” is an XML document which controls
how/what content the txt2XML parser tags from the input document.

2) Each rules document comprises an ordered set of “rules” (see table 3.1
and appendix B) which occur as elements (nodes) within the rules doc-

ument.
To help illustrate these points, here is an example of a simple rules document:

<?xml version="1.0" 7>
<txt2XML root_tag="0OutputFileRootTag" >
<l—--

A simple rules document which has the root tag
‘‘OutputFileRootTag’’ and tags the entire input
document content under one element
‘“‘entireBody0fText’’.

——>
<match tag="entireBodyOfText" />
</txt2XML>
Using these rules, if the input document where to look like this:

This is a single line document.
then the output document would look like this:

25

<?7xml version="1.0" 7>
<0OutputFileRootTag>

<entireBodyOfText>
This is a single line document.

</entireBodyOfText>

</0OutputFileRootTag>

An analogy to programming code will serve as a useful paradigm for under-
standing the relationships of these components to each other. txt2XML acts as the
compiler and runtime interpreter for the rules document, the rules document serves
as the programming code and the rules serve as elements of the “parser language”.
The input and output documents are the input and output data.

Indeed, we can extend this analogy further to the process of creating the rules
document. Skill needed to write a rules document is very much the same as that
needed to write program code; the user formulates the rules, tests output, then
corrects the rules based on their testing until the desired output is achieved.

In the rest of this chapter we will describe the content of the rules document, how
that document is used by txt2XML to tag the content of the input document, how
matching by the rules works, and examples of rules structures to achieve common

tagging tasks.
3.2. About the Rules Document

In line with a programming analogy a couple of points concerning the rules document
can be made. First, just as program code obeys the formalism of its target language,
there is a definite formalism that all rules documents (and declarations of various
rules within the rules document) must obey. This is described in the rules document

DTD (appendix D) which we can distill the gist of down to a few important points:

1) Some of the rules have attributes which control their behavior. There

are default values for some attributes.

26

Table 3.1: Summary of Available Parsing Rules and Attributes.

Parsing Rule

Allowed Attributes

Rule Description

txt2XML

match

repeat

choose

print

halt

ignore

root_tag!,
script_version,

acceptnull matches,
entities_to_encode,

include_errors_in_output,

error_tag

start, end, tag
statusOfStart,
status0fEnd,
test, remainder
required

what

start, end, tag
status0fStart,
statusOfEnd,
test, remainder
required

Root element in XML rules document.
Doesn’t have to have child rules, but
without them not much of anything will
get parsed!

Tries to match text passed to it

from the current working chunk. If

successful the matched text is either tagged

and inserted into the output document or passed
to child rules (if they exist).

This rule will cause to loop over its

child rules until none of the child

rules is successful in extracting something
from the current chunk. Repeat rules
must have child rules.

Allows choice between child rules. Must
have child rules. Use of this rule is
deprecated.

Print current chunk to STDOUT. Useful for
debugging rules without the GUI. Use of
this rule is deprecated.

Halts the parser run when encountered.

In the GUI, it is possible to proceed from one
halt rule to the next. Similar in functionality
to break point functionality in C debuggers.

Tries to match text passed to it

from the current working chunk.

If successful it will ignore this text

(so it won’t error out or appear in output)
Ignore rules may not have children.

!This attribute is required.

27

2) Some rules are allowed to take other rules as child nodes.
3) The txt2XML must always be the root node of any rules document.

4) The “root_tag” attribute of the txt2XML must be explicitly defined in

any set of rules.

Second, it is appropriate to reiterate that a good “programming style” is im-
portant when writing the rules document. Good programming style for a rules

document should include:

1) Use generous and consistent indentation to promote readability of the

rules document.

2) Use generous commenting of various rules to promote understandability

of the rules document.
3.3. How the txt2XML Uses the Rules to Tag Text

The rules document describes the procedure whereby the txt2XML parser will tag
the input text. As the procedure is executed, the input text is broken up into smaller
“working chunks” of text which are are either tagged and inserted in the output
document or passed onto the next part of the procedure. There is no limit (other
than the number of characters within the text) to how many times a working chunk
may be sub-divided before it is actually tagged. Each time the parser evaluates a
working text chunk, it is using a rule within the rules document to do so. Each
evaluation is an “rules event” for which there is an associated rule and “current
working chunk”.

The parser finishes its run when the procedure described by the rules document
ends, is stopped specifically by a halt rule or the parser runs out of input text to
process. The parser will record an error in the output document IF it runs out
of rules to execute while input text remains OR if input text remains but it has

executed all of its instructions in the rules document.

28

3.4. Matching Text with Rules

Directing the txt2XML parser in which text to tag or pass on is the most critical
functionality for any rules writer to understand. Both the ignore and match rules
may be used to grab parts of the working chunk. The mechanism for determining
which text will be matched and then tagged (or passed onto child nodes) is controlled
by the “start” and “end” attributes of these rules. Both start and end attributes
take a regular expression as their value. The text that the expression in either the
start or end attributes matches is respectively known as the “Start Match” and
“End Match”. The text which lies between the Start Match and End Match is
known as the “Match Text”. Figure 3.1 shows several examples how this matching
model works.

Before we move on, we need to briefly discuss the regular expression matching
used by txt2XML. As you may expect, txt2XML uses the Perl regular expression
matching conventions with one exception——you can not use the parenthesis struc-
ture. The reason for this boils down to the fact that the txt2XML parser internals
make special use of parenthesis already so that use of parenthesis in a rule regular
expression screws up txt2XML parser engine. For example, the following regular

expression is OK:
“["al[Alb] [A-z]\d.*?\n-{1,100}$
while this regular expression is NOT:
(“word|dude)
For more information on Perl regular expressions, check out these references:

Wall, L., Christensen, T., & Schwartz, R.L., “Programming Perl’, 2nd ed.,
O’Reilly & Associates, Inc., Sebastopol, CA, 1996

Friedl, J.E.F., “Mastering Regular Expressions’, 1st ed., O’Reilly & Associates,
Inc., Sebastopol, CA, 1997

29

Example 1. (Vanilla Match)

Eunle:

“<makbkch bag="Texk" sktart="~This" end="documsenkth." /=

Working Chunk:
This is some lext in a document. This text has a second line.

Start Match Match Text End Malch

Ontpnt XM
“<Texts 15 some textina </ Texe>

MNext Sibling Enle Receives:
This text has a second line.

Example 2. (Start Match as part of Match Text)

Rule:
<maktch btag="Text" start="AThis" =nd="documsnth."
statusofSkart="accspk" J&

Working Chunk:
This is some text in a decument. This text has a second line.

Ountput XM
<Text>|hisis some text ina </ Textc>

MNext Sibling Rule Receives:
This text has a second line.

Example 3. (Donating Text to Sibling Rule)

Enle:

<match bag="Text" start="~AThis" =nd="docums=nt%.3"
statusofEnd="donate" f=

Working Chnnk:
This iz some text in a document. This text has a second line.

Ountput XM
<Text> |5 s0metextinag </ Texke>

Sibling Enle Receives:

document. This text has a second line.
Figure 3.1. This figure shows the Match Text, Start Match, and End Match portions
of the working chunk for various values of the start, end, statusOfStart, and
status0fEnd attributes.

30

3.5. Examples of Rules Use

Here are some examples that illustrate several common problems often faced by the

person writing the rules.

3.5.1. Controlling the Working Chunk that Child/Sibling Rules See

Match rules can be used to control what part of the working chunk which is passed
on to child and sibling rules. Control is obtained by using the status0fStart and
status0fEnd attributes.

Consider the following set of rules:

<match tag="firstRule" start=""" end="text)\."
statusOfStart="drop" statusO0fEnd="drop" >

<match tag="childRule" />

</match>
<match tag="siblingRule" />

operating on the following working chunk:
This is a chunk of text. This is more text.

will produce the following block of output XML:

<firstRule>
<childRule>This is a chunk of </childRule>

</firstRule>
<siblingRule> This is more text.</siblingRule>

There are a couple of things are going on here. First, notice that the unmatched
portion of the working chunk is automatically passed to the next sibling rule (which
is tagged by it). Second, notice that only the Match Text portion of the working
chunk is passed to that match rules children. In our example above you can see

that the child rule received only a part of the first sentence (the end of the sentence

31

was part of the End Match). This is because in the first rule the values of its
statusOfStart and statusOfEnd attributes is set to “drop” (the default value).
This means that the portion of the working chunk that is part of the Start Match
and End Match will be eliminated (not passed on to the children).

If we make a small change the rules block by setting the status0OfEnd attribute
in the first rule to “accept”, e.g. using the following rules:

<match tag="firstRule" start=""" end="text\."
statusOfEnd="accept" >

<match tag="childRule" />
</match>
<match tag="siblingRule" />

the following block of output XML is obtained:

<firstRule>
<childRule>This is a chunk of text.</childRule>

</firstRule>
<siblingRule> This is more text.</siblingRule>

The status0fStart works similarly to the status0fEnd attribute. If statusOf-
Start is set to “accept” then the portion of the working chunk belonging to the Start
Match will be passed onto the child rules. Unlike status0fStart, the statusOfEnd
attribute can also take the value of “donate”. When the value of “donate” is chosen,
then the End Match portion of the working chunk will be passed onto the sibling
rule. Consider the following changed rules block where we have set statusOfEnd to
“donate”:

Consider the following set of rules:

<match tag="firstRule" start=""" end="text)\."
statusOfEnd="donate" >

<match tag="childRule" />

32

</match>
<match tag="siblingRule" />

then the following block of output XML is obtained:

<firstRule>
<childRule>This is a chunk of </childRule>

</firstRule>
<siblingRule>text. This is more text.</siblingRule>

3.5.2. Passing the Working Chunk Back to the Parent Rule

The remainder attribute makes it possible to pass the working chunk that remains
(e.g. after a match/ignore rule is finished) back up to the parent rule level. Normally
the remainder attribute is set to “error” meaning that any remaining chunk left,
after all rules at that level have been exhausted, is errored out. However, if the child
rule has remainder set to “data”, then the remainder chunk is passed back up to
the parent rule. If the parent rule also has the remainder attribute set to “data”,
the remainder chunk is passed up to the next parent rule level.
Consider the following example set of rules:

<match tag="parentRule" >

<match tag="childRule" end="This" remainder='"data"
/>

</match>

operating on the following working chunk of text:
This is a chunk of text. This is more text.

will produce the following output text:

<parentRule>

33

<childRule>This is a chunk of text.</childRule>

is more text. </parentRule>

Note if we set the statusOfEnd attribute (see sections 3.5.1, B.2.2) in the child
rule to “donate” we will pass back up its End Match text as well as the remainder

text. The output XML document would then look like the following:
<parentRule>
<childRule>This is a chunk of text.</childRule>

This is more text. </parentRule>

3.5.3. Removing Extraneous Text

Often there will occur some text which is undesirable to tag in the output document.
The rules writer may choose to use either a “trash match” or ignore rules to eliminate
this unwanted text.

A trash match is a match statement where a common tag such as “GARBAGE”
is used. This makes it easy for a post-processing script (such as one based on XSL) to
run on the output document to rip out this text. The ignore rule simply deletes the
Match Text portion and may be the favorable option to trash matching in the cases
that you won’t post-process your output or are confident that the rule is getting
exactly the text you want it to. It is certainly desireable to use trash matching over
ignore rules when you are trying to debug your output.

Consider the following example set of rules that incorportate the ignore rule:

<match tag="parentRule" >
<ignore end="This is" remainder='"data" />

</match>

operating on the following working chunk of text:

34

This is a chunk of text. This is the remaining text.

will produce the following output text:

<parentRule> the remaining text.</parentRule>

3.5.4. Flexible Tagging

Sometimes it is desirable to allow some flexibility in whether a rule can match text
or not. Normally, match and ignore rules are required, and when they fail to match
text within the working chunk an error is recorded in the output text. By setting
the required attribute in these rules to “no” it is possible to quietly fail to match
text in the working chunk.

Consider the following example set of rules:

<match tag="parentRule" >

<ignore end="Strange String" required="no" />
<! — — Now the child match rule gets
remaining working chunk —— >

<match tag="childRule" required="no" />

</match>
operating on the following working chunk of text:
This is a chunk of text.

will produce the following output text:

<parentRule>
<childRule>This is a chunk of text.</childRule>

</parentRule>

35

3.5.5. Creating Control Statements

The test attribute allows the rules writer some limited possibility to create control
statements within the rules document. The test attribute, if set, takes a Perl regular
expression. If a match is made, then the expression within the test attribute is
then evaluated on the Match Text.

Consider the following example set of rules:
<match tag="parentRulel" test="\d{1,3}" required="no">
<match tag="childRulel"/>

</match>
<match tag="parentRule2" test="chunk" required='"no">

<match tag="childRule2"/>
operating on the following working chunk of text:
This is a chunk of text.

will produce the following output text:
<parentRule2>
<childRule2>This is a chunk of text.</childRule2>

</parentRule2>

You can see that only the above rules work similarly to a case switch. Note
that the use of the required attribute is also needed to make this rules block work
smoothly (see sections 3.5.4 and B.2.2 for more information on using the required

attribute).

36

3.5.6. Tagging Repeated Text Structures

Often the same lexical structure will occur repeatedly within a document. It is then
convenient to use the repeat rule to create shorthand blocks of rules.

Consider the following example set of rules:

<repeat>
<! — — match from the beginning to the
first newline char —— >

<match tag="childRule" end="\n" />

</repeat>
operating on the following working chunk of text:

This is the first line.

This is the second line.
This is the third line.

will produce the following output text:

<childRule>This is the first line.</childRule>
<childRule>This is the second line.</childRule>
<childRule>This is the third line.</childRule>

3.5.7. Tagging Null Text Content

It can sometimes happen that the rules writer wants to match null content (in other
words the Match Text portion of the working chunk is equal to null content). Set
the txt2XML attribute accept_null matches to “Yes” to achieve this goal.

Consider the following example set of rules:

<txt2XML root_tag="Info" accept_null matches="yes" >

<match tag="Name" start=""" end=":" />
<match tag="Address" start=""" end="\n" />

37

</txt2XML>
operating on the following working chunk of text:
:150 Moon Orbit Dr.

will produce the following output text:

<Info>

<Name></Name>
<Address>150 Moon Orbit Dr.</Address>

</Info>
3.5.8. Arranging Output Tag Order

There is no sensible way to get txt2XML to arrange the output tag order. We
purposely have left this functionality out of txt2XML because this is something
that can be accomplished well by other software, namely XSL.

38

Appendix A

Summary of Options

39

Table A.1: Summary of General Options in txt2XML.

Option GUI menu Command line

Help Help->About -h
Help->Parsing Text —

GUI mode — -g

Split Windows — -split

Display

Tiny Display (800x600) — ~tiny!

Small Display (1024x768) — -sma11l

Normal Display (1280x1024) — -norma1’

Large Display (1600x1200) — -large!

Print Score to STDERR

Change Halt
on Error Level

Turn OFF Tagged
Errors in Output

Turn OFF Encoding
of Output Text

Allow Null Matches
in Output Text

Change Display Size
Change Font Size

Change Text Color

Parsing Control->Halt on Error Level

Parsing Control->Tagged Errors in Output

Parsing Control-> Entify Chars in Output

Parsing Control-> Allow Null Matches

Option->Change Tool Display Size
Option->Change Text Font Size

Option->Change Text Fg/Bg Color

-halt_on_error [value]

-null_match

40

'Turns on GUI automatically (no need to supply -g switch).

Table A.2: Summary of Mouse Bindings in txt2XML.

Key Binding Function

Input Text Bindings

right mouse button click relocate editor cursor
<Ctrl> + right mouse button click mark text break point
left mouse button click paste swiped text at cursor location

Rules Text Bindings

left mouse button click relocate editor cursor
<Ctrl> + left mouse button click make rule current event
right mouse button click paste swiped text at cursor location

Table A.3: Summary of GUI Key Bindings in txt2XML.

Key Binding Function

<Alt>-b Back 1 Rule.

<Alt>-B Back 10 Rules.

<Alt>—c Clear Input Text Break Point.
<Alt>-f Forward 1 Rule.

<Alt>-F Forward 10 Rules.

<Alt>-n Skip to Next <halt> Rule.
<Alt>-p Parse Document.

<Alt>—q Exit Program

<Alt>-v Toggle Input Text Chunk View.

41

Appendix B

Rules Glossary/API

A glossary of the txt2XML rules.

B.1. txt2XML Rule
B.1.1. Description

For any rules document, there is always one txt2XML rule and it must be the root
node. This rule is used to specify special processing instructions and the version of

the rules script.

42

B.1.2. Attributes

Attribute

root_tag

script_version

acceptnull matches

entities_to_encode

include_errors_in_output

error_tag

B.1.3. Usage

Default
Value

no

”&<’

ERROR

Description

Specifies the root element of output document.
Can take any string as a value.

Specifies which version this rules document is.
The version indicated here will be stamped in the
output document. Can take any string as a value.

Allow match and ignore rules to “grab” null
text. Can take either “yes” or “no” as
a value.

Specify which entities should be encoded by
the parser. Can take any string as a value.

Include errors as tagged text in
the output document. Can take either “yes” or “no’
as a value.

i

Value of the tag to use when including errors in
the output document. Can take any string as a
value.

You must specify a value for the root_tag attribute. All other attributes are op-

tional. It is a good idea to use the script_version attribute to indicate in the

output document which set of your rules created it.

B.2. match and ignore Rules

B.2.1. Description

These two rules are the heart and soul of tagging input text.

B.2.2. Attributes

43

Attribute

start

end

tag

statusOfStart

statusOfEnd

test

remainder

required

Default
Value

drop

drop

€rror

yes

Description

Indicates the beginning of the match. Takes any
Perl regular expression! as a value.

Indicates the end of the match. Takes any Perl

1 as a value.

regular expression
Indicates the name of the tag for matched text in

the output document. Can take any string as a value.
This attribute is not used by the ignore.

When a match is successfull, this rule
indicates what should be done with the text
that was matched by the regular expression in
the start attribute of this rule. Can take a
value of “drop” or “accept”.

When a match is successfull, this rule
indicates what should be done with the text
that was matched by the regular expression in
the end attribute of this rule. Can take a
value of “drop”, “accept” or “donate”.

If a successfull start and end match occur

the matched text is subjected to this further check.
If the check indicated by the test attribute is passed
the match or ignore rule is carried out as normal,
otherwise the rule fails to match. May take any Perl
regular expression or null (don’t check) as a value.

Indicates how remaining text should be treated.

Whether or not this rule is required to match.

If it fails to match and is required, an ERROR tag will
be created in the output text at the point the rule failed.
May take either “error” or “data” as a value.

1. With the exception that you can not use the parenthesis. See section 3.4 for an explanation.

2. The tag attribute is only available for the match rule.

44

B.2.3. Usage

The match and ignore rules share most of the same attributes and encompass over-
lapping usage. Both rules act on the working chunk (see section ??) by examining
it and taking part of it away for their own purposes. The text which is not grabbed
is passed onto the next sibling rule. What happens to the grabbed (or “matched”)
tex depends on the rule and the context in which it is used. The simplest rule to
explain is the ignore rule. Text grabbed from the working chunk by this rule is
dropped from consideration by the parser. The text grabbed by a match can be
used in several different ways. If the given match has a tag attribute, then it is
considered a “tagged match”. This type of match will always insert a tag in the
output text IF it grabs text from the working chunk. The name of the inserted tag
is specified by the tag attribute and the the grabbed text (in this case, the Match
Text) will be the text that is tagged under the specified tag. If the tagged match rule
has child rules, then a tag is opened for the tagged match and the text it grabbed
from the working chunk is passed onto its child rules (and the text that is passed
on is considered to be the working chunk by the children). If any child rules are
tagged match rules, then they may open tags nested within the parent match rule.

Consider the following rules:

<match tag="parentTaggedMatch" start=""" end="$" >
<match tag="childl" start=""" end="\n" /> <match
tag="child2" start=""" end="\n" />

<match>

operating on the following working chunk of text:
This is the first line. This is the second line.

will produce the following output text:

<parentTaggedMatch>

45

Table B.1: Differences in usage of Ignore and Match Rules

‘ Rule Type ‘ Child Nodes ‘
match with the tag May have child rules.
attribute (“tagged match”)
match without the tag Must have child rules.
attribute (“non-tag matching”)
ignore Never has child rules.

<child1>This is the first line.</childi>
<child2>This is the second line.</child2>

</parentTaggedMatch>

If a match lacks the tag attribute, it is being used to selectively grab a portion of the
working chunk to pass onto its child rules. In this case the match must have at least
1 tagged match rule OR ignore rule as a child rule. These cases are summarized in
table B.1.

You might wish to refer to section 3.4 for a more thorough description of how the
parser matches text. There are other helpful examples of the usage of both match

and ignore rules in section 3.5 and sprinkled throughout this appendix.

B.3. repeat Rule

B.3.1. Description

The repeat rule is used to create looping operations in the rules.

B.3.2. Attributes

The repeat rule does not have any attributes.

46

B.3.3. Usage

The repeat rule must have child rules. You can have any rule as a child (including

other repeat rules). For example:

<repeat>
<match tag="Line" start=""" end="\n" />

</repeat>
will tag each line within a given chunk with separate “Line” tags.

B.4. halt Rule

B.4.1. Description

The halt is used to stop the parser from proceeding further.

B.4.2. Attributes

The halt rule does not have any attributes.

B.4.3. Usage

This rule is useful for debugging the rules. In the GUI you may select to proceed to
the next halt statement. In this sense the halt rule is similar to a “stop” statement

in a C debugger. For example, consider the following snipett of parser rules:

<matchtag="Tag" start=""" end="\n" />
<halt/>
<ignore/><! — — ignore the rest of the chunk —— >

In the above rules the halt rule will stop the parser just after the match rule is
executed but before the repeat rule is run.

If a halt rule exists within a repeat rule, eg

<repeat>

<halt/>

47

<match tag="Line" start=""" end="\n" />

</repeat>

then the parser is halted on the first pass through the repeat loop (and, in the
snipett above, before the match rule is reached). By using the GUI Next Halt Button
it is possible to skip forward. Each press of the Next Halt Button would advance the
parser run one pass further along in the repeat loop (in the example rules above the
user would see the parser capture one more line of text from the working chunk for

each press of the Next Halt Button).

B.5. choose Rule

B.5.1. Description

The choose may be used to flexibly group together several different match or ignore
rules. Only one of the child rules is allowed to match text in the working chunk
and the children are considered in the order in which they appear. Once a match
is obtained, the remaining child rules are not considered and the parser moves to
the next sibling rule (of the choose). As an exception to their normal usage, the
required attribute of the child match and ignore rules defaults to “no” instead of

“yeS” .

B.5.2. Attributes
The choose does not have any attributes.

B.5.3. Usage

The use of this rule is deprecated. It must have child rules. Note that GUI interface
will not work properly and parser is not extensively tested (so it might knuckle

under and give erroneous results).

48

It is possible to use match rules within a repeat rule to simulate the functionality

of the choose rule. Consider the following rules:

<choose>
<match tag="number" start=""" test="\d" end="\n"
/>
<match tag="noNumber" start=""" end="\n" />
</choose>

operating on the following working chunk of text:

This is the line has no numbers in it.

This line does have numbers. It is the number 5.

will produce the following output text:

<number>This line does have numbers. It is the number
5.</number>

These rules would then pass on to the next sibling rule the following chunk:
This is the line has no numbers in it.

Here is a replacement set of rules that does almost the same thing but without

the choose rule:

<repeat>

<match remainder="data” >

<match tag="number” start=""" test="\d"
end="\n" required="no” remainder="data” />
<match tag="noNumber” start=""" end="\n"
required="no” remainder="data” />

<match>

< /repeat>

49

The main difference between using the choose rule example and the
match/repeat rule example being that the later will try to get as much of the
working chunk as possible. This would also be the case if we wrapped the choose
rule example rules in a repeat rule too. The advantage of using something like the
above match/repeat rules are that the output is not out of order in which it ap-
peared. The disadvantages are that the match/repeat rules are harder to formulate

and precise choose functionality can not be replicated.

B.6. print Rule

B.6.1. Description

The print rule causes the parser to print out information on the proceeding rule

when it is encountered.

B.6.2. Attributes

what What to report in the print. Takes either
“rule” or “chunk”.

B.6.3. Usage

The use of this rule is deprecated (use the txt2XML GUI mode instead!). Here is

an example usage:

<match tag="Tag" start=""" end="\n" />
<print what="chunk" />

will print out the working chunk for the preceeding match to standard error. The

print will not halt the parser (use a halt after the print to do that).

50

Appendix C

TODO/BUGS

Although we feel that txt2XML has all of the basic functionally to tackle real prob-
lems there remain some interesting possibilities for advanced features. Here is a
brief list of features that we are thinking of adding (when time permits!) and bugs

that we are aware of that need to be fixed.

i) Validation of rules (versus stock rules DTD).

ii) Click on output to find input chunk and rule which produced that output.
iii) Allow a batch mode to run on multiple files.

iv) Allow user to configure the keyboard/mouse short cuts to taste.

v) Allow user to browse/use all of the fonts available on their machine.
vi) Allow user to save configuration of GUI options between sessions.
vii) Allow validation of output document if a DTD is specified.

viii) Reorganize the content of this document for clarity and then convert it

into XML

ix) BUG: Fix the memory leak seen in the GUI program.

sn’t it ironic we wrote this in LaTeX?!?

51

Appendix D
txt2XML Rules DTD

This is the D'TD that may be used to validate any txt2XML set of rules.

<!—— txt2XML.dtd — Text—to—XML Rules Language
Date April 13, 2000
XML Language Document Type Definition (DTD)
for rules used by the txt2XML processor
(txt2XML.pl) to translate semi—structured
text data into XML. Essentially, a way to
pop XML tags into documents that do not have
XML tags.
—_—>
<!ELEMENT txt2XML (match | repeat | choose | print | halt | ignore)+ >
<!ATTLIST txt2XML
root_tag CDATA #REQUIRED
script_version CDATA #IMPLIED
accept null matches (yes|no) "no"
include_errors_in output (yes|no) "no"
entities_to_encode CDATA #IMPLIED
error_tag CDATA "ERROR"
>
<!ELEMENT match (match | repeat | choose | print | halt | ignore)* >
<!ATTLIST match
start CDATA """
end CDATA "§"
tag CDATA #IMPLIED
status0fStart (drop|accept) "drop"
statusOfEnd (drop|accept|donate) "drop"
test CDATA #IMPLIED
required (yes|no) "yes"
remainder (datalerror) "error"
>
<!ELEMENT repeat (match | repeat | choose | print | halt | ignore)+ >
<!ELEMENT choose (match | repeat | choose | print | halt | ignore)+ >
<!ELEMENT print EMPTY >
<!ATTLIST print

52

what (rule|chunk) "chunk"

>

<!ELEMENT halt EMPTY >

<!ELEMENT ignore EMPTY >

<!ATTLIST ignore
start CDATA "~"

end CDATA "$"
statusOfStart (drop|accept) "drop"
statusOfEnd (drop|accept|donate) "drop"
test CDATA #IMPLIED
required (yes|no) "yes"
remainder (datalerror) "error"

93

Appendix E

Sample Text

Here are the sample rules used in the GUI tutorial.

<7xml version="1.0"7>
<txt2XML root_tag="XMLmail">

<!—— Sample_rules.xml. For use in the txt2XML GUI tutorial ——>

<!—— first, remove the preamble, no info we want there ——>
<ignore end="—{10,80}\"/>

<!—— loop thru document, tagging up each email ——>
<repeat>
<!—— each email begins with "Subject:" line and

ends with 10 to 80 dashes and a newline
—>
<match tag="email" start="Subject:" end="*7—{3,80}\"
statusOfStart="accept">

<match tag="subject" start="Subject:\?" end="\"/>
<match tag="sender" start="From:\7" end="\"/>
<match tag="time" start="Date:\?" end="\"/>
<match tag="number" start="X—Message—Number:\?" end="\"/>
<match tag="body"/>

</match>

</repeat>

</txt2XML>
Here is the sample text used in the GUI tutorial.

From 777@??7 00:00:00 1997 +0000
Return—Path: <bounce—perl—xml—108857@listserv.activestate.com>
Received: from some.site.net (some.site.net [127.100.100.0])
by computer.some.site.net (8.9.3/8.9.3) with ESMTP id DAA30309
for <user@some.site.net>; Sun, 9 Apr 2000 03:11:12 —0400
Received: from some.site.net (some.site.net [127.100.99.5])
by some.site.net (8.9.3/8.9.3) with ESMTP id DAA13116
for <user@some.site.net>; Sun, 9 Apr 2000 03:12:11 —0400 (EDT)
Received: from listserv.activestate.com (listserv.activestate.com [199.60.48.6])
by some.site.net (8.9.3/8.9.3) with SMTP id DAA20147
for <user@some.site.net>; Sun, 9 Apr 2000 03:12:08 —0400 (EDT)
Date: Sun, 09 Apr 2000 00:00:49 —0700
Subject: perl—xml digest: April 08, 2000
To: " perl—xml digest recipients” <perl—xml@listserv.activestate.com>
From: " Perl-XML Mailing List digest” <perl—xml@Iistserv.activestate.com>
Reply—To: " Perl-XML Mailing List” <perl—xml@Iistserv.activestate.com>

o4

Precedence: bulk

Message—Id:
<LYR108857—53058—2000.04.09—00.00.49 — —user#some.site.net@lyris. ActiveState.com>
List—Unsubscribe: <mailto:leave—perl—xml—108857H@lyris.ActiveState.com>
List—Software: Lyris Server version 3.0

List—Subscribe: <mailto:subscribe—perl—xml@lyris.ActiveState.com>
List—Owner: <mailto:owner—perl—xml@lyris.ActiveState.com>
X—List—Host: ActiveState <http://www.ActiveState.com>

Sender: bounce—perl—xml|—108857@listserv.activestate.com

X—listname: perl—xml

X—ListMember: [user@some site.net]

Perl-XML Mailing List Digest for Saturday, April 08, 2000.

1. Another XML::Parser 2.28 question
2. Re: Another XML::Parser 2.28 question

Subject: Another XML::Parser 2.28 question
From: John Doe <john.doe@another.site.net>
Date: Sat, 8 Apr 2000 10:52:46 —0400 (EDT)
X—Message—Number: 1

HI,

| have a general question about XML::Parser 2.28: has anyone managed to
use it to output a DTD that’s "close” to the one in the input document?

By "close” | mean that the DTD should include the external entities (both
the declaration and the call) but not the content of those entities.

If | have
<!ENTITY % ent SYSTEM "ent.file" >
%ent;

| just want to get that back in the output.

At the moment | can get the content of ent.file parsed and | can output
the entities defined in t, but | have found no way to get ANYTHING about
the 2 lines above.

When | define handlers the Entity one does not see the first line and
the ExternEnt one is never called.

Any one managed to do better?

John Doe

Senior Programmer—Analyst
First Author Company
john.doe@another.site.net
http://somehomepage.html

Subject: Re: Another XML::Parser 2.28 question
From: Jane Doe <jane.doe@different.site.net>

95

Date: Sat, 8 Apr 2000 11:14:00 —0400 (EDT)
X—Message—Number: 2

On Sat, 8 Apr 2000, John Doe wrote:

> Hi,

>

> When | define handlers the Entity one does not see the first line and
> the ExternEnt one is never called.

| found the problem. XML::Parser::new sets the default handlers for
ExternEnt AFTER setting the user ones, thus overwriting the users’

An easy work around is to use SetHandlers after the new.

To fix it in XML::Parser lines 93—100 should be moved before the
previous block, to line 67.

I'm talking about those line:

if ($have_LWP) {
$handlers—>{ExternEnt} = &lwp_ext_ent_handler;
$handlers—>{ExternEntFin} = &Iwp_ext_ent_cleanup;

}
else {
$handlers—>{ExternEnt} = &file_ext_ent_handler;
$handlers—>{ExternEntFin} = &file_ext_ent_cleanup;
}

Jane

END OF DIGEST

You are currently subscribed to perl—xml as: [user@some site.net]
To unsubscribe, forward this message to
leave —perl—xml|—108857H@Ilyris.ActiveState.com
For non—automated Mailing List support, send email to
ListHelp@ActiveState.com

o6

Bug reports 7
Credits 7

GUI

Allow Null Matches in Output XML

Text , 13
Edit Menu, 12
Help Menu, 13
Input Text Area , 14
Options Menu, 11
Output Text Area , 15
Parsing Control Menu, 12
Rules Text Area , 15
command buttons , 10
editing input text , 14
orientation 10
parser score display , 10
setting input break point , 14
tutorial , 16

Known Bugs 51

Support 7
TODO 51

choose rule

End

attributes , 48
description 48
usage , 48
Match29

Index

End Match 30
halt rule
attributes , 47
description 47
usage , 47
ignore
matching text 29
ignore rule
attributes , 43
description 43
usage , 45
Match Text 8, 29, 30
match
matching text 29
non—tag , 46
match rule
attributes , 43
description 43
usage , 45
Perl
locating , 9
modules 4, 4
print rule
attributes , 50
description 50
usage , o0

o7

txt2XML trash match 34

GUI, 9 parser

GUI Mouse bindings , 9, 41 score definition 10

GUI key bindings , 41 parsing

GUI tutorial , 16 error levels , 8, 9

UNIX installation , 5 philosophy 8

WOx installation , 6 rule event 8

batch mode , 9 rules

command line mode , 9 DTD , 52

description 1, 2 examples , 31, 43, 45, 47, 48, 50

license , 7 glossary , 42

options , 40 introduction 25

requirements , 3 list of , 27

tutorial , 17 sample text

use for real jobs , 3 sample.txt , 54
repeat rules 54

attributes 46 working chunk 8

repeat rule
description 46
usage , 47
Start Match29
Start Match 30
txt2XML rule
attributes , 43
description 42
usage , 43
matching
non—tag , 46
tagged , 46

o8

